Decapentaplegic-responsive silencers contain overlapping mad-binding sites.

نویسندگان

  • Sheng Gao
  • Allen Laughon
چکیده

Smad proteins regulate transcription in response to transforming growth factor-beta signaling pathways by binding to two distinct types of DNA sites. The sequence GTCT is recognized by all receptor-activated Smads and by Smad4. The subset of Smads that responds to bone morphogenetic protein signaling recognizes a distinct class of GC-rich sites in addition to GTCT. Recent work has shown that Drosophila Mad protein, the homologue of bone morphogenetic protein rSmads, binds to GRCGNC sites through the same MH1 domain beta-hairpin interface used to contact GTCT sites. However, binding to GRCGNC requires base-specific contact by two Mad proteins, and here we provide evidence that this is achieved by contact of the two Mad subunits that overlap across the two central base pairs of the site. This topology is supported by results indicating that His-93, which is located at the tip of the Mad beta-hairpin, is in close proximity to base pairs 2 and 5. Also consistent with the model is disruption of binding by mutation of Glu-39 and Glu-40, which are predicted to lie at the interface of the two overlapping Mad MH1 domains. As predicted from the overlapping model, binding is disrupted by insertion of 1 bp in the middle of the site, whereas insertion of 2 bp creates abutting sites that can be bound by the Mad-Medea heterotrimer without requiring Glu-39 and Glu-40. Overlapping Mad sites predominate in decapentaplegic response elements, consistent with a high degree of specificity in response to signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repression of dpp targets by binding of brinker to mad sites.

Signaling by decapentaplegic (Dpp), a Drosophila member of the transforming growth factor (TGF) beta superfamily of growth factors, has recently been shown to activate targets such as vestigial (vg) indirectly through negative regulation of brinker (brk). Here we show that the Brk protein functions as a repressor by binding to Dpp response elements. The Brk DNA binding activity was localized to...

متن کامل

The zinc finger protein schnurri acts as a Smad partner in mediating the transcriptional response to decapentaplegic.

In Drosophila, a BMP-related ligand Decapentaplegic (Dpp) is essential for cell fate specification during embryogenesis and in imaginal disc development. Dpp signaling culminates in the phosphorylation and nuclear translocation of Mothers against dpp (Mad), a receptor-specific Smad that can bind DNA and regulate the transcription of Dpp-responsive genes. Genetic analysis has implicated Schnurri...

متن کامل

Regulation of spalt expression in the Drosophila wing blade in response to the Decapentaplegic signaling pathway.

Pattern formation depends on the acquisition of precise cellular identities due to the differential expression of transcription factors. Enhancers within regulatory regions integrate the positive and negative regulatory signals directing gene transcription. Here, we analyze the enhancer that drives expression of the Drosophila gene spalt in the wing blade. This enhancer integrates positive sign...

متن کامل

Functional intertwining of Dpp and EGFR signaling during Drosophila endoderm induction.

Endoderm induction in Drosophila is mediated by the extracellular signals Decapentaplegic (Dpp) and Wingless (Wg). We discovered a secondary signal with a permissive role in this process, namely Vein, a neuregulin-like ligand that stimulates the epidermal growth factor receptor (EGFR) and Ras signaling. Dpp and Wg up-regulate vein expression in the midgut mesoderm in two regions overlapping the...

متن کامل

Regulation of decapentaplegic expression during Drosophila wing veins pupal development

The differentiation of veins in the Drosophila wing relies on localised expression of decapentaplegic (dpp) in pro-vein territories during pupal development. The expression of dpp in the pupal veins requires the integrity of the shortvein region (shv), localised 5' to the coding region. It is likely that this DNA integrates positive and negative regulatory signals directing dpp transcription du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 35  شماره 

صفحات  -

تاریخ انتشار 2006